A Bootstrap-like Rejection Mechanism for Multilayer Perceptron Networks

نویسندگان

  • Germano C. Vasconcelos
  • Michael C. Fairhurst
  • David L. Bisset
چکیده

Multilayer perceptron networks (MLP) are investigated with respect to the problem of the detection of spurious patterns. A novel mechanism is proposed based on the ideas of boot-strapping that when incorporated into the standard MLP provides the network with the ability to continuously modifying its responses across the input space. The mechanism makes use of the outputs given by the network itself during its recall phase to improve performance in the rejection of spurious inputs, through a scheme of reinforcement of the classiication decisions taken by the network. A example of the 1 Neural Networks, Pattern Recognition and Image Processing. operation of this mechanism is shown in the classiication of handwritten characters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parametric Bootstrap for Test of Contrast Difference in Neural Networks

This work concernes the contrast difference test and its asymptotic properties for non linear auto-regressive models. Our approach is based on an application of the parametric bootstrap method. It is a re-sampling method based on the estimate parameters of the models. The resulting methodology is illustrated by simulations of multilayer perceptron models, and an asymptotic justification is give...

متن کامل

Empirical Evaluation of machine learning techniques for software effort estimation

Accurate estimation of software development effort is a very difficult job.Both under estimation as well as over estimation can lead to serious consequences. So its very important to find a technique which can yield accurate results for software effort estimation. Here in our paper we have evaluated various machine learning techniques for software effort estimation like bagging, decision trees,...

متن کامل

Bayesian applications of belief networks and multilayer perceptrons for ovarian tumor classification with rejection

Incorporating prior knowledge into black-box classifiers is still much of an open problem. We propose a hybrid Bayesian methodology that consists in encoding prior knowledge in the form of a (Bayesian) belief network and then using this knowledge to estimate an informative prior for a black-box model (e.g. a multilayer perceptron). Two technical approaches are proposed for the transformation of...

متن کامل

Fast bootstrap methodology for regression model selection

Using resampling methods like cross-validation and bootstrap is a necessity in neural network design, for solving the problem of model structure selection. The bootstrap is a powerful method offering a low variance of the model generalization error estimate. Unfortunately, its computational load may be excessive when used to select among neural networks models of different structures or complex...

متن کامل

An investigation of feedforward neural networks with respect to the detection of spurious patterns

This thesis investigates feedforward neural networks in the context of classi cation tasks with respect to the detection of patterns that do not belong to the same categories of patterns used to train the network. This refers to the problem of the detection and/or rejection of spurious or novel patterns. In particular, the multilayer perceptron network (MLP) trained with the backpropagation alg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995